Fractional Besov Trace/Extension-Type Inequalities via the Caffarelli–Silvestre Extension

نویسندگان

چکیده

Let $$u(\cdot ,\cdot )$$ be the Caffarelli–Silvestre extension of f. The first goal this article is to establish fractional trace-type inequalities involving In doing so, firstly, we Sobolev/logarithmic Sobolev/Hardy trace in terms $$\nabla _{(x,t)}u(x,t).$$ Then, prove anisotropic $$ {\partial _{t} u(x,t)}$$ or $$(-\varDelta )^{-\gamma /2}u(x,t)$$ only. Moreover, based on an estimate Fourier transform kernel and sharp affine weighted $$L^p$$ Sobolev inequality, that $${\dot{H}}^{-\beta /2}({\mathbb {R}}^n)$$ norm f(x) can controlled by product -affine energy -norm $${\partial u(x,t)}.$$ second characterize non-negative measures $$\mu $${\mathbb {R}}^{n+1}_+$$ such embeddings $$\begin{aligned} \Vert u(\cdot )\Vert _{L^{q_0,p_0}_{\mu }({\mathbb {R}}^{n+1})}\lesssim f\Vert _{{\dot{\varLambda }}^{p,q}_\beta ({\mathbb {R}}^n)} \end{aligned}$$ hold for some $$p_0$$ $$q_0$$ depending p q which are classified three different cases: (1) $$p=q\in (n/(n+\beta ),1];$$ (2) $$(p,q)\in (1,n/\beta )\times (1,\infty );$$ (3) \{\infty \}.$$ For case (1), characterized analytic condition variational capacity minimizing function, iso-capacitary inequality open balls, other weak-type inequalities. cases (3), Besov sets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-hadamard Type Inequalities via Conformable Fractional Integrals

In this study, a new identity involving conformable fractional integrals is given. Then, by using this identity, some new Hermite-Hadamard type inequalities for conformable fractional integrals have been developed.

متن کامل

Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals

Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named [Formula: see text]-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.

متن کامل

Discussion of some inequalities via fractional integrals

Recently, many generalizations and extensions of well-known inequalities were obtained via different kinds of fractional integrals. In this paper, we show that most of those results are particular cases of (or equivalent to) existing inequalities from the literature. As consequence, such results are not real generalizations.

متن کامل

Ostrowski type inequalities involving conformable fractional integrals

In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.

متن کامل

OPIAL TYPE Lp-INEQUALITIES FOR FRACTIONAL DERIVATIVES

This paper presents a class of Lp-type Opial inequalities for generalized fractional derivatives for integrable functions based on the results obtained earlier by the first author for continuous functions (1998). The novelty of our approach is the use of the index law for fractional derivatives in lieu of Taylor’s formula, which enables us to relax restrictions on the orders of fractional deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2022

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-022-00975-3